Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Malar J ; 23(1): 64, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429807

RESUMO

Malaria remains a global health challenge, disproportionately affecting vulnerable communities. Despite substantial progress, the emergence of anti-malarial drug resistance poses a constant threat. The Greater Mekong Subregion (GMS), which includes Cambodia, China's Yunnan province, Lao People's Democratic Republic, Myanmar, Thailand, and Viet Nam has been the epicentre for the emergence of resistance to successive generations of anti-malarial therapies. From the perspective of the World Health Organization (WHO), this article considers the collaborative efforts in the GMS, to contain Plasmodium falciparum artemisinin partial resistance and multi-drug resistance and to advance malaria elimination. The emergence of artemisinin partial resistance in the GMS necessitated urgent action and regional collaboration resulting in the Strategy for Malaria Elimination in the Greater Mekong Subregion (2015-2030), advocating for accelerated malaria elimination interventions tailored to country needs, co-ordinated and supported by the WHO Mekong malaria elimination programme. The strategy has delivered substantial reductions in malaria across all GMS countries, with a 77% reduction in malaria cases and a 97% reduction in malaria deaths across the GMS between 2012 and 2022. Notably, China was certified malaria-free by WHO in 2021. Countries' ownership and accountability have been pivotal, with each GMS country outlining its priorities in strategic and annual work plans. The development of strong networks for anti-malarial drug resistance surveillance and epidemiological surveillance was essential. Harmonization of policies and guidelines enhanced collaboration, ensuring that activities were driven by evidence. Challenges persist, particularly in Myanmar, where security concerns have limited recent progress, though an intensification and acceleration plan aims to regain momentum. Barriers to implementation can slow progress and continuing innovation is needed. Accessing mobile and migrant populations is key to addressing remaining transmission foci, requiring effective cross-border collaboration. In conclusion, the GMS has made significant progress towards malaria elimination, particularly in the east where several countries are close to P. falciparum elimination. New and persisting challenges require sustained efforts and continued close collaboration. The GMS countries have repeatedly risen to every obstacle presented, and now is the time to re-double efforts and achieve the 2030 goal of malaria elimination for the region.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Organização Mundial da Saúde , Sudeste Asiático
2.
Am J Trop Med Hyg ; 110(1): 79-82, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38081047

RESUMO

Thailand aims to eliminate malaria by 2026, with 46 of the country's 77 provinces already verified as malaria free. However, these provinces remain susceptible to the reestablishment of indigenous transmission that would threaten the national goal. Thus, the country is prioritizing national and subnational prevention of reestablishment (POR) planning while considering the spatial heterogeneity of the remaining malaria caseload. To support POR efforts, a novel nonmodeling method produced a malaria stratification map at the tambon (subdistrict) level, incorporating malaria case data, demographic data, and environmental factors. The stratification analysis categorized 7,425 tambons into the following four risk strata: Local Transmission (2.9%), At Risk for Transmission (3.1%), High Risk for Reintroduction (2.9%), and Low Risk for Reintroduction (91.1%). The stratification map will support the national program to target malaria interventions in remaining hotspots and mitigate the risk of transmission in malaria-free areas.


Assuntos
Malária , Humanos , Tailândia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Risco , Motivação , Retratamento
3.
BMJ Glob Health ; 8(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37940203

RESUMO

INTRODUCTION: Thailand's malaria surveillance system complements passive case detection with active case detection (ACD), comprising proactive ACD (PACD) methods and reactive ACD (RACD) methods that target community members near index cases. However, it is unclear if these resource-intensive surveillance strategies continue to provide useful yield. This study aimed to document the evolution of the ACD programme and to assess the potential to optimise PACD and RACD. METHODS: This study used routine data from all 6 292 302 patients tested for malaria from fiscal year 2015 (FY15) to FY21. To assess trends over time and geography, ACD yield was defined as the proportion of cases detected among total screenings. To investigate geographical variation in yield from FY17 to FY21, we used intercept-only generalised linear regression models (binomial distribution), allowing random intercepts at different geographical levels. A costing analysis gathered the incremental financial costs for one instance of ACD per focus. RESULTS: Test positivity for ACD was low (0.08%) and declined over time (from 0.14% to 0.03%), compared with 3.81% for passive case detection (5.62%-1.93%). Whereas PACD and RACD contributed nearly equal proportions of confirmed cases in FY15, by FY21 PACD represented just 32.37% of ACD cases, with 0.01% test positivity. Each geography showed different yields. We provide a calculator for PACD costs, which vary widely. RACD costs an expected US$226 per case investigation survey (US$1.62 per person tested) or US$461 per mass blood survey (US$1.10 per person tested). CONCLUSION: ACD yield, particularly for PACD, is waning alongside incidence, offering an opportunity to optimise. PACD may remain useful only in specific microcontexts with sharper targeting and implementation. RACD could be narrowed by defining demographic-based screening criteria rather than geographical based. Ultimately, ACD can continue to contribute to Thailand's malaria elimination programme but with more deliberate targeting to balance operational costs.


Assuntos
Malária , Humanos , Tailândia/epidemiologia , Malária/diagnóstico , Malária/epidemiologia , Malária/prevenção & controle , Custos e Análise de Custo , Inquéritos e Questionários
4.
Acta Trop ; 248: 107016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683820

RESUMO

BACKGROUND: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program. METHODS: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates. RESULTS: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates. CONCLUSIONS: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.


Assuntos
Antimaláricos , Plasmodium knowlesi , Sulfadoxina/farmacologia , Pirimetamina/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Di-Hidropteroato Sintase/genética , Plasmodium knowlesi/genética , Tailândia , Simulação de Acoplamento Molecular , Ligantes , Filogenia , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Sulfametoxazol/farmacologia , Plasmodium falciparum/genética
5.
BMC Public Health ; 23(1): 1346, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37438774

RESUMO

BACKGROUND: Reactive case detection (RACD) or testing and treatment of close contacts of recent malaria cases, is commonly practiced in settings approaching malaria elimination, but standard diagnostics have limited sensitivity to detect low level infections. Reactive drug administration (RDA), or presumptive treatment without testing, is an alternative approach, but better understanding regarding community acceptability and operational feasibility are needed. METHODS: A qualitative study was conducted as part of a two-arm cluster randomized-controlled trial evaluating the effectiveness of RDA targeting high-risk villages and forest workers for reducing Plasmodium vivax and P. falciparum malaria in Thailand. Key informant interviews (KIIs) and focus group discussions (FGDs) were conducted virtually among key public health staff, village health volunteers (VHVs), and household members that implemented or received RDA activities. Transcriptions were reviewed, coded, and managed manually using Dedoose qualitative data analysis software, then underwent qualitative content analysis to identify key themes. RESULTS: RDA was well accepted by household members and public health staff that implemented it. RDA participation was driven by fear of contracting malaria, eagerness to receive protection provided by malaria medicines, and the increased access to health care. Concerns were raised about the safety of taking malaria medicines without having an illness, particularly if underlying health conditions existed. Health promotion hospital (HPH) staff implementing RDA noted its operational feasibility, but highlighted difficulty in traveling to remote areas, and requested additional travel resources and hiring more VHVs. Other challenges were highlighted including the need for additional training for VHVs on malaria activities and the inability of HPH staff to conduct RDA due to other health priorities (e.g., Covid-19). More training and practice for VHVs were noted as ways to improve implementation of RDA. CONCLUSIONS: To maximize uptake of RDA, regular education and sensitization campaigns in collaboration with village leaders on the purpose and rationale of RDA will be critical. To alleviate safety concerns and increase participant safety, a rigorous pharmacovigilance program will be important. To accelerate uptake of RDA, trust between HPH staff and VHVs and the communities they serve must continue to be strengthened to ensure acceptance of the intervention. TRIAL REGISTRATION: This study was approved by the Committee on Human Research at the University of California San Francisco (19-28,060) and the local Ethics Committee for Research in Human Subjects at Tak Provincial Health office (009/63) and Kanchanaburi Provincial health office (Kor Chor 0032.002/2185). Local authorities and health officers in the provinces, districts, and villages agreed upon and coordinated the implementation of the study. All methods in this study were carried out in accordance with relevant guidelines and regulations.


Assuntos
COVID-19 , Malária Falciparum , Malária , Humanos , Plasmodium vivax , Tailândia , Estudos de Viabilidade , Malária/tratamento farmacológico , Malária/prevenção & controle
6.
Trop Med Infect Dis ; 8(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36977180

RESUMO

Thailand has made substantial progress towards malaria elimination, with 46 of the country's 77 provinces declared malaria-free as part of the subnational verification program. Nonetheless, these areas remain vulnerable to the reintroduction of malaria parasites and the reestablishment of indigenous transmission. As such, prevention of reestablishment (POR) planning is of increasing concern to ensure timely response to increasing cases. A thorough understanding of both the risk of parasite importation and receptivity for transmission is essential for successful POR planning. Routine geolocated case- and foci-level epidemiological and case-level demographic data were extracted from Thailand's national malaria information system for all active foci from October 2012 to September 2020. A spatial analysis examined environmental and climate factors associated with the remaining active foci. A logistic regression model collated surveillance data with remote sensing data to investigate associations with the probability of having reported an indigenous case within the previous year. Active foci are highly concentrated along international borders, particularly Thailand's western border with Myanmar. Although there is heterogeneity in the habitats surrounding active foci, land covered by tropical forest and plantation was significantly higher for active foci than other foci. The regression results showed that tropical forest, plantations, forest disturbance, distance from international borders, historical foci classification, percentage of males, and percentage of short-term residents were associated with the high probability of reporting indigenous cases. These results confirm that Thailand's emphasis on border areas and forest-going populations is well placed. The results suggest that environmental factors alone are not driving malaria transmission in Thailand; rather, other factors, including demographics and behaviors that intersect with exophagic vectors, may also be contributors. However, these factors are syndemic, so human activities in areas covered by tropical forests and plantations may result in malaria importation and, potentially, local transmission, in foci that had previously been cleared. These factors should be addressed in POR planning.

7.
Malar J ; 21(1): 222, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850687

RESUMO

BACKGROUND: Thailand's strong malaria elimination programme relies on effective implementation of its 1-3-7 surveillance strategy, which was endorsed and implemented nationwide in 2016. For each confirmed malaria patient, the Ministry of Public Health's Division of Vector Borne Diseases (DVBD) ensures completion of case notification within 1 day, case investigation within 3 days, and foci investigation within 7 days. To date, there has not been a comprehensive assessment of the performance and achievements of the 1-3-7 surveillance strategy although such results could help Thailand's future malaria elimination strategic planning. METHODS: This study examined adherence to the 1-3-7 protocols, tracked progress against set targets, and examined geographic variations in implementation of the 1-3-7 strategy in the programme's initial 5 years. An auto-regressive integrated moving average (ARIMA) time series analysis with seasonal decomposition assessed the plausible implementation effect of the 1-3-7 strategy on malaria incidence in the programme's initial 5 years. The quantitative analysis included all confirmed malaria cases from public health and non-governmental community facilities from October 2014 to September 2021 (fiscal year [FY] 2015 to FY 2021) (n = 77,405). The spatial analysis included active foci with known geocoordinates that reported more than five cases from FY 2018 to FY 2021. RESULTS: From FY 2017 to FY 2021, on-time case notification improved from 24.4% to 89.3%, case investigations from 58.0% to 96.5%, and foci investigations from 37.9% to 87.2%. Adherence to timeliness protocols did not show statistically significant variation by area risk classification. However, adherence to 1-3-7 protocols showed a marked spatial heterogeneity among active foci, and the ARIMA model showed a statistically significant acceleration in the reduction of malaria incidence. The 1-3-7 strategy national indicators and targets in Thailand have shown progressive success, and most targets were achieved for FY 2021. CONCLUSION: The results of Thailand's 1-3-7 surveillance strategy are associated with a decreased incidence in the period following the adoption of the strategy although there is notable geographic variation. The DVBD will continue to implement and adapt the 1-3-7 strategy to accelerate progress toward malaria elimination. This assessment may be useful for domestic strategic planning and to other countries considering more intensive case and foci investigation and response strategies.


Assuntos
Malária , Previsões , Humanos , Incidência , Malária/epidemiologia , Malária/prevenção & controle , Tailândia/epidemiologia
8.
Malar J ; 21(1): 213, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799247

RESUMO

Thailand's National Malaria Elimination Strategy 2017-2026 seeks to increase domestic support and financing for malaria elimination. During 2018-2020, through a series of training sessions, public health officials in Thailand utilized foci-level malaria data to engage subdistrict-level government units known as Local Administrative Organizations (LAOs) with the aim of increasing their understanding of their local malaria situation, collaboration with public health networks, and advocacy for financial support of targeted interventions in villages within their jurisdictions. As a result of these efforts, total LAO funding support for malaria nearly doubled from the 2017 baseline to 2020. In 2021, a novel "LAO collaboration" feature was added to Thailand's national malaria information system that enables tracking and visualization of LAO financial support of malaria in areas with transmission, by year, down to the subdistrict level. This case study describes Thailand's experience implementing the LAO engagement strategy, quantifying and monitoring the financial support mobilized from LAOs, and results from a qualitative study in five high-performance provinces examining factors and approaches that foster successful local collaboration between LAOs, public health networks, and communities for malaria prevention and response. Results from the study showed that significant malaria endemicity or local outbreaks helped spur collaboration in multiple provinces. Increases in LAO support and involvement were attributable to four approaches employed by public health officials: (a) strengthening malaria literacy and response capacity of LAOs, (b) organizational leadership in response to outbreaks, (c) utilization of structural incentives, and (d) multisectoral involvement in malaria response. In two provinces, capacity building of LAOs in malaria vector control, following a precedent set by Thailand's dengue programme, enabled LAO personnel to play both funding and implementation roles in local malaria response. Wider replication of the LAO engagement strategy across Thailand may sustain gains and yield efficiencies in the fight against malaria as the vector-borne disease workforce declines. Lessons from Thailand's experience may be useful for malaria programmes in other geographies to support the goals and sustainability of elimination and prevention of re-establishment by improving financing through local collaboration between the health system and elected officials.


Assuntos
Anopheles , Malária , Animais , Apoio Financeiro , Laos/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores , Tailândia
9.
Malar J ; 21(1): 47, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164759

RESUMO

BACKGROUND: Across the Greater Mekong Subregion, malaria remains a dangerous infectious disease, particularly for people who visit forested areas where residual transmission continues. Because vector control measures offer incomplete protection to forest goers, chemoprophylaxis has been suggested as a potential supplementary measure for malaria prevention and control. To implement prophylaxis effectively, additional information is needed to understand forest goers' activities and their willingness to use malaria prevention measures, including prophylaxis, and how it could be delivered in communities. Drawing on in-depth interviews with forest goers and stakeholders, this article examines the potential acceptability and implementation challenges of malaria prophylaxis for forest goers in northeast Thailand. METHODS: In-depth interviews were conducted with forest goers (n = 11) and stakeholders (n = 16) including healthcare workers, community leaders, and policymakers. Interviews were audio-recorded, transcribed and coded using NVivo, employing an inductive and deductive approach, for thematic analysis. RESULTS: Forest goers were well aware of their (elevated) malaria risk and reported seeking care for malaria from local health care providers. Forest goers and community members have a close relationship with the forest but are not a homogenous group: their place and time-at-risk varied according to their activities and length of stay in the forest. Among stakeholders, the choice and cost of anti-malarial prophylactic regimen-its efficacy, length and complexity, number of tablets, potential side effects, and long-term impact on users-were key considerations for its feasibility. They also expressed concern about adherence to the preventive therapy and potential difficulty treating malaria patients with the same regimen. Prophylaxis was considered a low priority in areas with perceived accessible health system and approaching malaria elimination. CONCLUSIONS: In the context of multi-drug resistance, there are several considerations for implementing malaria prophylaxis: the need to target forest goers who are at-risk with a clear period of exposure, to ensure continued use of vector control measures and adherence to prophylactic anti-malarials, and to adopt an evidence-based approach to determine an appropriate regimen. Beyond addressing current intervention challenges and managing malaria incidence in low-transmission setting, it is crucial to keep malaria services available and accessible at the village level especially in areas home to highly mobile populations.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Quimioprevenção , Florestas , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle , Tailândia
10.
BMC Med Res Methodol ; 21(1): 287, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930128

RESUMO

BACKGROUND: In many areas of the Greater Mekong Subregion (GMS), malaria endemic regions have shrunk to patches of predominantly low-transmission. With a regional goal of elimination by 2030, it is important to use appropriate methods to analyze and predict trends in incidence in these remaining transmission foci to inform planning efforts. Climatic variables have been associated with malaria incidence to varying degrees across the globe but the relationship is less clear in the GMS and standard methodologies may not be appropriate to account for the lag between climate and incidence and for locations with low numbers of cases. METHODS: In this study, a methodology was developed to estimate the spatio-temporal lag effect of climatic factors on malaria incidence in Thailand within a Bayesian framework. A simulation was conducted based on ground truth of lagged effect curves representing the delayed relation with sparse malaria cases as seen in our study population. A case study to estimate the delayed effect of environmental variables was used with malaria incidence at a fine geographic scale of sub-districts in a western province of Thailand. RESULTS: From the simulation study, the model assumptions which accommodated both delayed effects and excessive zeros appeared to have the best overall performance across evaluation metrics and scenarios. The case study demonstrated lagged climatic effect estimation of the proposed modeling with real data. The models appeared to be useful to estimate the shape of association with malaria incidence. CONCLUSIONS: A new method to estimate the spatiotemporal effect of climate on malaria trends in low transmission settings is presented. The developed methodology has potential to improve understanding and estimation of past and future trends in malaria incidence. With further development, this could assist policy makers with decisions on how to more effectively distribute resources and plan strategies for malaria elimination.


Assuntos
Malária , Teorema de Bayes , Simulação por Computador , Humanos , Incidência , Malária/epidemiologia , Tailândia/epidemiologia
11.
Malar J ; 20(1): 458, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876133

RESUMO

BACKGROUND: In April 2017, the Thai Ministry of Public Health (MoPH) was alerted to a potential malaria outbreak among civilians and military personnel in Sisaket Province, a highly forested area bordering Cambodia. The objective of this study was to present findings from the joint civilian-military outbreak response. METHODS: A mixed-methods approach was used to assess risk factors among cases reported during the 2017 Sisaket malaria outbreak. Routine malaria surveillance data from January 2013 to March 2018 obtained from public and military medical reporting systems and key informant interviews (KIIs) (n = 72) were used to develop hypotheses about potential factors contributing to the outbreak. Joint civilian-military response activities included entomological surveys, mass screen and treat (MSAT) and vector control campaigns, and scale-up of the "1-3-7" reactive case detection approach among civilians alongside a pilot "1-3-7" study conducted by the Royal Thai Army (RTA). RESULTS: Between May-July 2017, the monthly number of MoPH-reported cases surpassed the epidemic threshold. Outbreak cases detected through the MoPH mainly consisted of Thai males (87%), working as rubber tappers (62%) or military/border police (15%), and Plasmodium vivax infections (73%). Compared to cases from the previous year (May-July 2016), outbreak cases were more likely to be rubber tappers (OR = 14.89 [95% CI: 5.79-38.29]; p < 0.001) and infected with P. vivax (OR=2.32 [1.27-4.22]; p = 0.006). Themes from KIIs were congruent with findings from routine surveillance data. Though limited risk factor information was available from military cases, findings from RTA's "1-3-7" study indicated transmission was likely occurring outside military bases. Data from entomological surveys and MSAT campaigns support this hypothesis, as vectors were mostly exophagic and parasite prevalence from MSAT campaigns was very low (range: 0-0.7% by PCR/microscopy). CONCLUSIONS: In 2017, an outbreak of mainly P. vivax occurred in Sisaket Province, affecting mainly military and rubber tappers. Vector control use was limited to the home/military barracks, indicating that additional interventions were needed during high-risk forest travel periods. Importantly, this outbreak catalyzed joint civilian-military collaborations and integration of the RTA into the national malaria elimination strategy (NMES). The Sisaket outbreak response serves as an example of how civilian and military public health systems can collaborate to advance national malaria elimination goals in Southeast Asia and beyond.


Assuntos
Erradicação de Doenças/organização & administração , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Participação dos Interessados , Surtos de Doenças , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Militares/estatística & dados numéricos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Prevalência , Fatores de Risco , Tailândia/epidemiologia
12.
Sci Rep ; 11(1): 23348, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857842

RESUMO

Identifying sources and sinks of malaria transmission is critical for designing effective intervention strategies particularly as countries approach elimination. The number of malaria cases in Thailand decreased 90% between 2012 and 2020, yet elimination has remained a major public health challenge with persistent transmission foci and ongoing importation. There are three main hotspots of malaria transmission in Thailand: Ubon Ratchathani and Sisaket in the Northeast; Tak in the West; and Yala in the South. However, the degree to which these hotspots are connected via travel and importation has not been well characterized. Here, we develop a metapopulation model parameterized by mobile phone call detail record data to estimate parasite flow among these regions. We show that parasite connectivity among these regions was limited, and that each of these provinces independently drove the malaria transmission in nearby provinces. Overall, our results suggest that due to the low probability of domestic importation between the transmission hotspots, control and elimination strategies can be considered separately for each region.


Assuntos
Telefone Celular/estatística & dados numéricos , Migração Humana/estatística & dados numéricos , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Vigilância da População , Fatores de Risco , Tailândia/epidemiologia , Viagem
13.
Malar J ; 20(1): 454, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861860

RESUMO

BACKGROUND: Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the molecular analysis of P. knowlesi parasites causing malaria in Thailand. METHODS: Under Thailand's integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and southern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydrofolate reductase (pkdhfr) was sequenced and homology modelling was constructed. RESULTS: The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis with homology modelling, the two mutations were not associated with anti-malarial drug resistance. CONCLUSIONS: This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. The parasites were also shown to be sensitive to pyrimethamine.


Assuntos
Malária/epidemiologia , Plasmodium knowlesi/genética , Erradicação de Doenças , Genes de Protozoários , Marcadores Genéticos , Humanos , Incidência , Malária/parasitologia , Plasmodium knowlesi/classificação , Proteínas de Protozoários/análise , Tailândia/epidemiologia
14.
Malar J ; 20(1): 261, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107955

RESUMO

BACKGROUND: Integrated drug efficacy surveillance (iDES) was formally introduced nationally across Thailand in fiscal year 2018 (FY2018), building on a history of drug efficacy monitoring and interventions. According to the National Malaria Elimination Strategy for Thailand 2017-2026, diagnosis is microscopically confirmed, treatment is prescribed, and patients are followed up four times to ensure cure. METHODS: Routine patient data were extracted from the malaria information system for FY2018-FY2020. Treatment failure of first-line therapy was defined as confirmed parasite reappearance within 42 days for Plasmodium falciparum and 28 days for Plasmodium vivax. The primary outcome was the crude drug efficacy rate, estimated using Kaplan-Meier methods, at day 42 for P. falciparum treated with dihydroartemisinin-piperaquine plus primaquine, and day 28 for P. vivax treated with chloroquine plus primaquine; day 60 and day 90 efficacy were secondary outcomes for P. vivax. RESULTS: The proportion of patients with outcomes recorded at day 42 for P. falciparum malaria and at day 28 for P. vivax malaria has been increasing, with FY2020 follow-up rates of 61.5% and 57.2%, respectively. For P. falciparum malaria, day 42 efficacy in FY2018 was 92.4% (n = 249), in FY2019 93.3% (n = 379), and in FY2020 98.0% (n = 167). Plasmodium falciparum recurrences occurred disproportionally in Sisaket Province, with day 42 efficacy rates of 75.9% in FY2018 (n = 59) and 49.4% in FY2019 (n = 49), leading to an update in first-line therapy to pyronaridine-artesunate at the provincial level, rolled out in FY2020. For P. vivax malaria, day 28 efficacy (chloroquine efficacy) was 98.5% in FY2018 (n = 2048), 99.1% in FY2019 (n = 2206), and 99.9% in FY2020 (n = 2448), and day 90 efficacy (primaquine efficacy) was 94.8%, 96.3%, and 97.1%, respectively. CONCLUSIONS: In Thailand, iDES provided operationally relevant data on drug efficacy, enabling the rapid amendment of treatment guidelines to improve patient outcomes and reduce the potential for the spread of drug-resistant parasites. A strong case-based surveillance system, integration with other health system processes, supporting biomarker collection and molecular analyses, and cross-border collaboration may maximize the potential of iDES in countries moving towards elimination.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Tailândia , Resultado do Tratamento
15.
Malar J ; 20(1): 201, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906648

RESUMO

Thailand's National Malaria Elimination Strategy 2017-2026 introduced the 1-3-7 strategy as a robust surveillance and response approach for elimination that would prioritize timely, evidence-based action. Under this strategy, cases are reported within 1 day, cases are investigated within 3 days, and foci are investigated and responded to within 7 days, building on Thailand's long history of conducting case investigation since the 1980s. However, the hallmark of the 1-3-7 strategy is timeliness, with strict deadlines for reporting and response to accelerate elimination. This paper outlines Thailand's experience adapting and implementing the 1-3-7 strategy, including success factors such as a cross-sectoral Steering Committee, participation in a collaborative regional partnership, and flexible local budgets. The programme continues to evolve to ensure prompt and high-quality case management, capacity maintenance, and adequate supply of lifesaving commodities based on surveillance data. Results from implementation suggest the 1-3-7 strategy has contributed to Thailand's decline in malaria burden; this experience may be useful for other countries aiming to eliminate malaria.


Assuntos
Malária/prevenção & controle , Vigilância da População/métodos , Humanos , Tailândia
16.
Malar J ; 20(1): 118, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639951

RESUMO

BACKGROUND: Thailand's success in reducing malaria burden is built on the efficient "1-3-7" strategy applied to the surveillance system. The strategy is based on rapid case notification within 1 day, case investigation within 3 days, and targeted foci response to reduce the spread of Plasmodium spp. within 7 days. Autochthonous transmission is still occurring in the country, threatening the goal of reaching malaria-free status by 2024. This study aimed to assess the effectiveness of the 1-3-7 strategy and identify factors associated with presence of active foci. METHODS: Data from the national malaria information system were extracted from fiscal years 2013 to 2019; after data cleaning, the final dataset included 81,012 foci. A Cox's proportional hazards model was built to investigate factors linked with the probability of becoming an active focus from 2015 to 2019 among foci that changed status from non-active to active focus during the study period. We performed a model selection technique based on the Akaike Information Criteria (AIC). RESULTS: The number of yearly active foci decreased from 2227 to 2013 to 700 in 2019 (68.5 %), and the number of autochthonous cases declined from 17,553 to 3,787 (78.4 %). The best Cox's hazard model showed that foci in which vector control interventions were required were 18 % more likely to become an active focus. Increasing compliance with the 1-3-7 strategy had a protective effect, with a 22 % risk reduction among foci with over 80 % adherence to 1-3-7 timeliness protocols. Other factors associated with likelihood to become or remain an active focus include previous classification as an active focus, presence of Plasmodium falciparum infections, level of forest disturbance, and location in border provinces. CONCLUSIONS: These results identified factors that favored regression of non-active foci to active foci during the study period. The model and relative risk map align with the national malaria program's district stratification and shows strong spatial heterogeneity, with high probability to record active foci in border provinces. The results of the study may be useful for honing Thailand's program to eliminate malaria and for other countries aiming to accelerate malaria elimination.


Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Malária Falciparum/prevenção & controle , Malária Vivax/parasitologia , Malária/prevenção & controle , Estudos de Coortes , Humanos , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Modelos de Riscos Proporcionais , Tailândia
17.
Stat Methods Med Res ; 30(1): 22-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595402

RESUMO

In much of the Greater Mekong Sub-region, malaria is now confined to patches and small foci of transmission. Malaria transmission is seasonal with the spatiotemporal patterns being associated with variation in environmental and climatic factors. However, the possible effect at different lag periods between meteorological variables and clinical malaria has not been well studied in the region. Thus, in this study we developed distributed lagged modelling accounting for spatiotemporal excessive zero cases in a malaria elimination setting. A multivariate framework was also extended to incorporate multiple data streams and investigate the spatiotemporal patterns from multiple parasite species via their lagged association with climatic variables. A simulation study was conducted to examine robustness of the methodology and a case study is provided of weekly data of clinical malaria cases at sub-district level in Thailand.


Assuntos
Malária , Plasmodium , Simulação por Computador , Humanos , Incidência , Malária/epidemiologia
18.
Malar J ; 19(1): 107, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127009

RESUMO

BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples. METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated. RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification. CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Camboja/epidemiologia , DNA de Protozoário/genética , Teste em Amostras de Sangue Seco , Combinação de Medicamentos , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Mutação , Prevalência , Tailândia/epidemiologia
19.
Trop Med Infect Dis ; 4(4)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847121

RESUMO

Background: Malaria Clinics (MCs) have served communities in Thailand since 1965 and are still playing a critical role in providing early diagnosis and effective treatment of malaria. Methods: We reviewed six decades of published manuscripts, articles, strategies, and plans regarding MC operations in Thailand;,and analyzed national program surveillance data in both malaria control and malaria elimination phases. Results: MCs accounted for 39.8% of malaria tests and 54.8% of positive cases by the end of the 1980s. The highest number of MCs established was 544 in 1997. MCs contributed to 6.7% of all tests and 30% of all positive cases over the 2015-2017 period. Between 2017 and June 2019, during the malaria elimination phase, MCs continued to test an average of 67% of all persons tested for malaria, and confirmed 38.3% of all positive cases detected in the country. Conclusions: Testing and positive rates of MCs are on a gradual decline as the overall burden of malaria declines annually, which may reflect decreasing transmission intensity. Although the number of MCs in the last three years has been stable (n = 240), the attrition of MC staff poses a real challenge to the longevity of MCs in the absence of a human resource plan to support the elimination phase. It is necessary to identify and support capacity gaps and needs as MCs are absorbed into an integrated and decentralized program, while ensuring that the Division of Vector Borne Diseases (DVBD) maintains its necessary technical and advisory role.

20.
Malar J ; 18(1): 240, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311606

RESUMO

BACKGROUND: Tak Province, at the Thai-Myanmar border, is one of three high malaria incidence areas in Thailand. This study aimed to describe and identify possible factors driving the spatiotemporal trends of disease incidence from 2012 to 2015. METHODS: Climate variables and forest cover were correlated with malaria incidence using Pearson's r. Statistically significant clusters of high (hot spots) and low (cold spots) annual parasite incidence per 1000 population (API) were identified using Getis-Ord Gi* statistic. RESULTS: The total number of confirmed cases declined by 76% from 2012 to 2015 (Plasmodium falciparum by 81%, Plasmodium vivax by 73%). Incidence was highly seasonal with two main annual peaks. Most cases were male (62.75%), ≥ 15 years (56.07%), and of Myanmar (56.64%) or Thai (39.25%) nationality. Median temperature (1- and 2-month lags), average temperature (1- and 2-month lags) and average relative humidity (2- and 3-month lags) correlated positively with monthly total, P. falciparum and P. vivax API. Total rainfall in the same month correlated with API for total cases and P. vivax but not P. falciparum. At sub-district level, percentage forest cover had a low positive correlation with P. falciparum, P. vivax, and total API in most years. There was a decrease in API in most sub-districts for both P. falciparum and P. vivax. Sub-districts with the highest API were in the Tha Song Yang and Umphang Districts along the Thai-Myanmar border. Annual hot spots were mostly in the extreme north and south of the province. CONCLUSIONS: There has been a large decline in reported clinical malaria from 2012 to 2015 in Tak Province. API was correlated with monthly climate and annual forest cover but these did not account for the trends over time. Ongoing elimination interventions on one or both sides of the border are more likely to have been the cause but it was not possible to assess this due to a lack of suitable data. Two main hot spot areas were identified that could be targeted for intensified elimination activities.


Assuntos
Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Meio Ambiente , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mianmar/etnologia , Estações do Ano , Tailândia/epidemiologia , Tailândia/etnologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...